
15.6) Triple Integrals

A rectangular box is a region B  x,y, z  x  a,b, y  c,d, z  p,q 
a,b  c,d  p,q, where a  b, c  d, and p  q.

A triple integral over this box is   
B
fx,y, z dV  

a

b


c

d


p

q

fx,y, z dz dy dx. By Fubini’s

Theorem, this can be rewritten into five other possible orders, such as 
c

d


p

q


a

b

fx,y, z dx dz dy,

so long as f is continuous on B.

The Integral Factorization Principle: If fx,y, z can be factored as rxsytz, then


a

b


c

d


p

q

fx,y, z dz dy dx  
a

b

rx dx 
c

d

sy dy 
p

q

tz dz.

Example One: 
0

1


1

2


0

3

xyz2 dz dy dx  
0

1

x dx 
1

2

y dy 
0

3

z2 dz  1
2 x

2
0

1 1
2 y

2
1
2 1

3 z
3

0

3


1
2 1  0 1

2 4  1 1
3 27  0   1

2 
3
2 9  27

4

We now consider triple integrals over finite three-dimensional regions (known as solids)
other than rectangular boxes.

We begin by reviewing and extending some geometric concepts discussed earlier this
semester...

Let C1 be a given curve in the x,y plane. Let C2 be its orthogonal projection into x,y, z space.
C2 is a special type of surface known as a cylinder (parallel to the z axis). If the curve C1 is
a circle, then the cylinder C2 is known as a circular cylinder. We shall assume C1 is a
simple, closed curve–possibly a circle, possibly an ellipse, possibly a more complicated
shape.

The cylinder extends infinitely far in the direction of positive z and in the direction of negative
z, but we are interested in a finite section of the cylinder, bounded between two horizontal
planes, the lower plane z  p and the upper plane z  q (in which case, the finite section has
vertical height q  p.

The closed three-dimensional region bounded by the cylinder C2 and the planes z  p and
z  q is known as a cylindrical solid. This region encompasses both its boundary points
and its interior points.
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If the curve C1 is a circle, then the we have a circular cylindrical solid. Think of it as a
can of baked beans. It has three faces: The top face is circular disk, the bottom face is a
circular disk (congruent to the top face), and the lateral or vertical face is a circular “tube.”

Now suppose that we replace the lower boundary plane z  p with a surface that is the
graph of a function, z  u1x,y, and we replace the upper boundary plane z  q with
another surface that is the graph of a function, z  u2x,y, where u2x,y  u1x,y. The
closed three-dimensional region bounded by the cylinder C2 and the surfaces z  u1x,y
and z  u2x,y may be referred to as a modified cylindrical solid. Let us refer to this
solid as E.

If the curve C1 is a circle, then think of the modified cylindrical solid as a can of baked
beans where the top and bottom have been warped so they are no longer flat, but the lateral
face or tube has not been warped.

We have stipulated that C1 is a simple, closed curve. Let D be the closed region of the x,y
plane bounded by C1. In other words, D consists of the points on C1 and the interior points
encompassed by C1.

D is the orthogonal projection of the modified cylindrical solid E onto the x,y plane.

We shall assume D is either a Type I region or a Type II region.

  
E
fx,y, z dV   

D


u1x,y

u2x,y

fx,y, z dz dA.

 If D is Type I, we get 
a

b


g1x

g2x


u1x,y

u2x,y

fx,y, z dz dy dx.

 If D is Type II, we get 
c

d


h1y

h2y


u1x,y

u2x,y

fx,y, z dz dx dy.

The above triple integrals are known as Type 1 triple integrals. (Note that we use the Arabic
numeral 1 instead of the Roman numeral I.) The region E is known as a Type 1 solid.

We can also have Type 2 and Type 3 triple integrals and solids.
 In Type 2, region D is in the y, z plane, and the modified cylindrical solid E is parallel

to the x axis, capped off by the surfaces x  u1y, z and x  u2y, z.

  
E
fx,y, z dV   

D


u1y,z

u2y,z

fx,y, z dx dA.
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 In Type 3, region D is in the x, z plane, and the modified cylindrical solid E is parallel
to the y axis, capped off by the surfaces y  u1x, z and y  u2x, z.

  
E
fx,y, z dV   

D


u1x,z

u2x,z

fx,y, z dy dA.

Here is an example of a Type 1 triple integral. Let C1 be the circle x2  y2  1, so D is
closed disk x2  y2  1, and C2 is a circular cylinder with radius 1 centered at the z axis. Let
the bottom face of E be the hemisphere z   1  x2  y2 . Let the top face of E be the

hemishphere z  5  1  x2  y2 . So E is bounded by a section of C2 having height 5,
capped off above and below by hemispheres with radius 1.   

E
fx,y, z dV 

 
D


 1x2y2

5 1x2y2

fx,y, z dz dA  
1

1


 1x2

1x2


 1x2y2

5 1x2y2

fx,y, z dz dy dx.

A special case of any of these triple integrals is where the the solid E has no lateral face,
because the top surface and the bottom surface come together, forming a curve C3 in x,y, z
space–a curve whose orthogonal projection onto the x,y plane is the curve C1 (assuming we
have a Type 1 problem). A simple example of this would be if E is just a sphere. Think of
the previous example, where the top and bottom hemispheres are just the two halves of one
sphere, x2  y2  z  52  1, centered at the point 0,0,5. The top hemisphere is
z  5  1  x2  y2 , and the bottom hemisphere is z  5  1  x2  y2 . Thus,

  
E
fx,y, z dV   

D


5 1x2y2

5 1x2y2

fx,y, z dz dA  
1

1


 1x2

1x2


5 1x2y2

5 1x2y2

fx,y, z dz dy dx.

Example 2: Let E be the tetrahedron (triangular-based pyramid) bounded by the four
planes x  0, y  0, z  0, and x  y  z  1. The four vertices of this tetrahedron are
0,0,0, 1,0,0, 0,1,0, and 0,0,1. We will approach this as a Type 1 problem, where D
is the triangular region in the x,y plane with vertices 0,0, 1,0, and 0,1, bounded by the
lines x  0, y  0, and y  x  1. We will view D as Type I, with g1x  0 and
g2x  x  1. For E, we have u1x,y  0 and u2x,y  1  x  y.

  
E
z dV  

0

1


0

x1


0

1xy

z dz dy dx.


0

1xy

z dz  1
2 z

2
z0

z1xy
 1

2 1  x  y2. It’s better not to multiply this out.
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Now we have 
0

1


0

x1
1
2 1  x  y2 dy dx  1

2 
0

1


0

x1

1  x  y2 dy dx.

To find 1  x  y2 dy, let w  1  x  y, so dw  dy and dy  dw, giving us

 w2dw   1
3 w

3   1
3 1  x  y3. Hence, 

0

x1

1  x  y2 dy 

 1
3 1  x  y3

y0

yx1
 1

3 1  x  y3 yx1
y0 .

When y  0, 1  x  y3 becomes 1  x3. When y  x  1, 1  x  y3 becomes 0. Thus,
1
3 1  x  y3 yx1

y0 gives us 1
3 1  x3. Once again, it’s better not to multiply this out.

Now we have 1
2 

0

1

1
3 1  x3dx  1

6 
0

1

1  x3dx.

To find 1  x3dx, let w  1  x, so dw  dx and dx  dw, giving us

 w3dw   1
4 w

4   1
4 1  x4. Hence,

1
6 

0

1

1  x3dx  1
6  1

4 1  x4
0

1
 1

24 1  x4 1
0  1

24 .

Example 3: Let E be the region bounded by the circular paraboloid y  x2  z2 and the
plane y  4. We will approach this as a Type 3 solid. Its projection onto the x, z plane, D, is
the circular disk x2  z2  4. This is another case where E has no lateral face. Its bottom
face is the surface y  u1x, z  x2  z2, and its top face is the surface (or plane)
y  u2x, z  4.

  
E

x2  z2 dV   
D


x2z2

4

x2  z2 dy dA 


2

2


 4x2

4x2


x2z2

4

x2  z2 dy dz dx  
2

2


 4x2

4x2

x2  z2 
x2z2

4

dy dz dx.


x2z2

4

dy  yyx2z2
y4  4  x2  z2  4  x2  z2.

Now we have 
2

2


 4x2

4x2

x2  z2 4  x2  z2 dz dx.
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To complete the problem, it is best to switch to polar coordinates, with x  rcos and
z  r sin, and x2  z2  r2. D is simply the polar rectangle 0,2  0,2, so the double

integral becomes 
0

2


0

2

r4  r2 r dr d  
0

2


0

2

4r2  r4 dr d  
0

2

4r2  r4dr 
0

2

d. Note that we

have used the Integral Factorization Principle. We now get
4
3 r

3  1
5 r

5
0

2
 0

2   64
15 2  128

15 .

Example 4: Rewrite 
0

1


0

x2


0

y

fx,y, z dz dy dx in the order dx dz dy.

The integral starts out as Type 1, and we must rewrite it as Type 2. We first analyze it in
the context of Type 1 in order to figure out the solid E.

E has lower boundary z  0 and upper boundary z  y, which is an oblique plane (the
orthogonal projection, parallel to the x axis, of the line z  y in the y, z plane). Note that
these lower and upper boundaries intersect at the x axis.

The region D in the x,y plane is Type I, where x  0,1 and y  0,x2. In other words, the
lower boundary of D is the x axis and the upper boundary is the parabola y  x2, between
the vertical lines x  0 and x  1. The corner points of D are 0,0, 1,0, and 0,1.

In terms of our general theory, the boundary of D is a simple, closed curve C1. In this case,
C1 consists of three distinct pieces: the line segment along the x axis from 0,0 to 1,0,
the line segment along the vertical line x  1 from 1,0 to 1,1, and the arc of the parabola
y  x2 from 0,0 to 1,1. Before trying to visualize region E, it’s helpful to first visualize the
cylinder C2 of infinite extent. E is derived from C2 by capping it above and below.) Cylinder
C2 has three lateral faces: The section of the plane y  0 where x  0,1, the section of the
plane x  1 where y  0,1, and the section of the parabolic cylinder y  x2 where x  0,1.

Since D lies in the x,y plane, which is the plane z  0, and since z  0 is the lower bounary
of E, D is itself the bottom face of E. The top face intersects the bottom face at the x axis.
Say we start out at the x axis, anywhere in the interval 0,1. Say we hold x fixed and then
allow y to increase from 0 to 1. As we move across the top face of E, i.e., across the plane
z  y, z will likewise increase from 0 to 1 (at a 45 degree angle). For this fixed value of x, we
reach the far edge of the top face when z  y  x2. The maximum values of y and z are
achieved when x is 1, and these maximum values are z  y  1. Thus, the highest point of
E is the point 1,1,1. Every other point of E has a z coordinate less than 1.

Whereas cylinder C2 has three lateral faces, E has only two: the section of the plane x  1
where y  0,1 and z  0,y, and the section of the parabolic cylinder y  x2 where
x  0,1 and z  0,x2. The latter face is difficult to visualize, but the former face is
relatively straightforward: It is a triangular patch of the plane x  1, with vertices 1,0,0,
1,1,0, and 1,1,1.
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To reformulate E as Type 2, we must find the projection of E onto the y, z plane. This would
be the region D bounded by the y axis, the z axis, and the line z  y. This is a triangle with
vertices 0,0, 1,0, and 1,1.

As a Type 2 solid, the upper boundary of E is the plane x  1. The lower boundary is a bit
trickier. In general, it is a surface of the form x  u1y, z, but in this case u1 depends only
on y. To find this function, we invert the equation y  x2, giving us x  y .

Thus, we may rewrite our integral as 
0

1


0

y


y

1

fx,y, z dx dz dy.

Finding Volumes of Solids:

Scenario 1: The graph of a function y  hx is a curve C that passes the vertical line test.
If h is positive on its domain, then C lies above the x axis. For an interval a,b in the
domain of h, the (single) integral 

a

b
hx dx gives us the area of the plane region bounded

below by the x axis and bounded above by C over the interval a,b. If we replace hx with
1, we get 

a

b
dx, which gives us the length of the interval a,b, which is b  a. (Technically,

we should say that the numerical value of 
a

b
dx is equal to the numerical value of the length

of a,b. The units, however, are different. 
a

b
dx will be in square units, whereas the length

of a,b will be in linear units.)

Scenario 2: The graph of a function z  gx,y is a surface S that passes the vertical line
test. If g is positive on its domain, then S lies above the x,y plane. For a closed, bounded
region D in the domain of g, the double integral  

D
gx,y dA gives us the volume of the

solid bounded below by the x,y plane and bounded above by S over the region D. If we
replace gx,y with 1, we get  

D
dA, which gives us the area of D. (Technically, we should

say that the numerical value of  
D
dA is equal to the numerical value of the area of D. The

units, however, are different.  
D
dA will be in cubic units, whereas the area of D will be in

square units.)

Now let us combine Scenarios 1 and 2. Suppose the region D is in fact the plane region
bounded below by the x axis and bounded above by C over the interval a,b. Then D is a
Type I region, with g1x  0 and g2x  hx. The area of D can thus be expressed either
as a single integral or as a double integral: 

a

b
hx dx   

D
dA  

a

b 
0

hx
dy dx.

Scenario 3: The graph of a function w  fx,y, z is a hyper-surface H that passes the
vertical line test. If f is positive on its domain, then H lies “above” x,y, z space. For a closed,
bounded region E in the domain of f, the triple integral   

E
fx,y, z dV gives us the

hyper-volume of the hyper-solid bounded “below” by x,y, z space and bounded “above” by H
over the solid E. If we replace fx,y, z with 1, we get   

E
dV, which gives us the volume of

E. (Technically, we should say that the numerical value of   
E
dV is equal to the numerical
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value of the volume of E. The units, however, are different.   
E
dV will be in quartic units,

whereas the volume of E will be in cubic units.)

Now let us combine Scenarios 2 and 3. Suppose the region E is in fact the solid bounded
below by the x,y plane and bounded above by S over the region D. Then E is a Type 1
solid, with u1x,y  0 and u2x,y  gx,y. The volume of E can thus be expressed either
as a double integral or as a triple integral:  

D
gx,y dA    

E
dV   

D

0

gx,y
dz dA.

Of course, we may be able to combine all three scenarios, giving us 
a

b 
0

hx 
0

gx,y
dz dy dx.

But that’s not the point of this analysis. The point is that we have the flexibility to calculate
areas using either single or double integrals (in the latter case, with an integrand of 1, and
we have the flexibility to calculate volumes using either double or triple integrals (in the latter
case, with an integrand of 1.
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